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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2443

THE SIMILARITY LAW FOR HYPERSONIC FLOW ABOUT
SIENDER THREE-DIMENSIONAL SHAPES

By Frank M. Hamaker, Stanford E. Neice,
and A, J. Eggers, Jr.

SUMMARY

The similarity law for steady, inviscid hypersonic flow about
slender three-dimensional shapes is derived in terms of customary
aerodynamic parameters. To have similarity of flow, the law states
that the lateral dimensions of the shapes in question and their angles
with respect to the flight direction must be inversely proportional to
their flight Mach numbers. A direct consequence of this law is that
the ratio of the local static pressure to the free-stream static
pressure is the same at corresponding points in similar flow fields.

The law is applied to the determination of simple expressions for
correlating the forces and moments acting on related shapes operating
at hypersonic speeds. The shapes considered are wings, bodies, and
wing-body combinations. 1In the special case of inclined bodies of
revolution, these expressions are extended to include some significant
effects of the viscous cross force.

Results of a limited experimental investigation of the pressures
acting on two inclined cones are found to check the law as it applies
to bodies of revolution. Further investigation is necessary, however,
to determine the range of applicability of the law.

INTRODUCTION

The hypersonic similarity law for steady potential flows about

thin airfoil sections and slender nonlifting bodies of revolution was
first developed by Tsien in reference 1. The law states that the flows
about these shapes will be similar provided (a) the free-stream Mach
numbers are large compared to 1, (b) the shapes have the same thickness
distributions, and (c) the products of the free-stream Mach numbers and
the thickness ratios are the same. Hayes (reference 2) investigated
this law from the standpoint of analagous unsteady flows and concluded
that it would also apply to nonpotential flows containing pronounced
shock waves and vorticity, provided the local Mach number was everywhere
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large compared to 1. He also reasoned that similitude could be obtained
in hypersonic flows about slender three-dimensional bodies of arbitrary
shape; however, the form of the similarity law in terms of customary
aerodynamic parameters was not determined.

Ehret, Rossow, and Stevens (reference 3) investigated the hyper-
sonic similarity law for nonlifting bodies of revolution by comparing
pressure distributions calculated by means of the method of character-
istics. They found the law to be applicable over a wide range of Mach
numbers and thickness ratios. Their investigation did not, however,
include the effects of vorticity arising from the curvature of the nose
shock wave. Rossow (reference 4) continued this investigation and
found that the law was equally valid when the effects of vorticity were
included in the calculations. These findings corroborated, in part,
the observations of Hayes and indicated that the law may be used with
confidence to investigate the aerodynamic characteristics of nonlifting
bodies of revolution at hypersonic speeds.

With the successful application of the hypersonic similarity law
to nonlifting bodies of revolution, it appeared desirable to determine
the form of the law, in terms of customary aerodynamic parameters, for
slender three-dimensional bodies of arbitrary shape. An investigation
of the more general law was therefore undertaken. The purpose of this
paper is to present the results of this study.

SYMBOLS
a speed of sound
A characteristic reference area of body (A = b t)
b characteristic span or width of body
c characteristic chord or length of body
Cd, section drag coefficient of circular cylinder with axis

perpendicular to the flow

3, mean c4, for a body of revolution

C,  side-force coefficient side force
1 2
5 PoVo A

Eb side~force parameter

Cp drag coefficient ifgféﬁL—

2
5 PoVo A
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drag parameter
rolling moment
% 0oVoZADb

rolling-moment coefficient

rolling-moment parameter

lift
1
5 poVoZA

1lift coefficient

1ift parameter'

pitching moment

1 2
5 PoVo Ac

pitching-moment coefficient

pitching-moment parameter

yawing moment

1 2

yawing-moment coefficient

yawing-moment parameter

dimensionless perturbation potential function

viscous force or moment function

dimensionless body shape function

bo@y shape function

unit vectors along coordinate axes X,Y¥,2, respectively

direction cosines of the vector N with respect to the x,y,z
axes, respectively

hypersonic similarity parameters

Mach number
unit outer normal to surface of body
static pressure

radius of body of revolution at any station x
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Re cross Reynolds number based on maximum body diameter and the
: component of the free-stream velocity normal to the body axis

s cross force per unit length

t characteristic thickness or depth of body

u,v,w components of velocity, V, in the direction of the x,y,z axes,
respectively

v resultant velocity

X,y,2z Cartesian coordinates

a angle of attack

B angle of sideslip

Y ratio of specific heats
o] angle of roll

g,n,§ dimensionless coordinates corresponding to x,y,z, respectively

e orifice location on the test cones

p stream density

P perturbation velocity potential
Subscripts

v refers to viscous cross-force effects

o  refers to free-stream conditions

1,2,3 refers to different functions F, aﬁ, or Cp, except as noted
Superscript

- refers to vector quantities
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DEVELOPMENT OF THE SIMILARITY LAW
FOR INVISCID THREE-DIMENSIONAL FLOW

The following assumptions are made in this analysis: (1) the Mach
number of the uniform free stream is large compared to 1 (i.e., the
flow is hypersonic), (2) the disturbance velocities are small compared
to the free-stream velocity, and (3) the flow is of the steady potential
type. It is clear from the first two assumptions that the analysis is
strictly applicable only to slender shapes in hypersonic flow. As was
Pointed out in the introduction, however, the last assumption should
not restrict the range of applicability of the results to potential
flows. The purpose of making this assumption is to simplify the
analysis.

A slender body is V4
oriented in x,y,z space
a8 shown in sketch (a) y

wilth the free-stream
veloclty Vo directed

B
along the x axis, 7(
13
7 ! —/// X

The general differ— —
ential equation of motion
for steady f£flow about the 3
body can be written in (a) a
the following form:

(aZ-u®)uy + (az-ve)vy + (a2-w@)w, - uv(uy + vyx) -
vw(vy + wy) - wu(wyx + ug) =0 (1)
where the condition of irrotationality requires that
Uy =Vx , Vz =Wy , Wy =ug (2)

As a consequence of equation (2), a perturbation velocity
potential, @, can be defined as follows:

U=Vo+ P , v=0 , w=0, (3)

The energy equation, relating free-stream and local conditions on
the body, can be written in the following form:

acg® + Zél Vo2 = a2 + Zél (¥ + v2 + w2 (&)
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Introducing the perturbation potential expressions of equation (3),
equation (4) then becomes »

-1 - ;
ap- + ZE— Voo = a? + Zgl (VoF + 2Ve@yx + O° + ?yZ + 957) (5)

If equations (2), (3), and (5) are now introduced into equation (1),
the steady-state, three-dimensional potential eguation of motion is
obtained as follows:

[aoz - Zé; (2Ve@x + Py + ¢y2 £ 9,5 - VT - 2Vg0x - ¢X2J Pxx +
l:aoz - j—é—]—- (QVQCPX + q)xe + q)ye + q)Zg) - q)y2] q)yy +
[aqz - ZE; (2V Py + P> + an + 955 - ¢z2J Pzz -

2(Voq)y + (Px(py)cpx-y - 2(Vo(pz + q)xcpz)cpxz - eq)yq)z(pyz =0 (6)

For hypersonic flow about slender shapes, ®x, Py, Pz, and ao are small

compared to Vo, and a simple analysis further indicates that @y is

small compared to @y and Pyt Accordingly, the exact potential »
equation is simplified by neglecting, in general, all terms of higher

order than é%y2 and @z2, and by neglecting, in particular, all terms

except -Vo© in the coefficient of @xx. Equation (6) may therefore

be reduced to the form

2 _ oy Mo Y+l g 2 .7—]_ 2
Mo q)XX [l ('}'l) 2o CPX—-é-a—O'écpy —anecpz ]q)yy—

Mo y-lgpg2 7+1 g2
[ 1 - (7-1) = P - - " Gag2 Pz Pry +

Mo
20 Qo + 2 ’:—Z Py + fo—z P, P = O (7)

o)

170 illustrate, for two-dimensional flows of the type considered in thils
analysis the compatability equations, which hold along characteristic

lines, take on the form AV = j:% Av. Since M is large compared

to 1, this equation shows that AV is small compared to Av. It

follows, then, that ®x 1is small compared to @z. From a different ’
point of view, the statement that @ is small compared to @z is
just another way of stating a well-known property of hypersonic flows,
namely, that although the direction of the resultant velocity wvector
may change appreciably, the magnitude of the velocity vector changes

only slightly.
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This relation is emplo&ed as the equation of motion in the following
analysis. The boundary conditions remain to be determined.

The shape of a slender three-dimensional body is defined in its
reference position2 in the flow field by the functional relation

G(x,y,2) =0 (8)
The unit normal at a point on the surface is given by the vector
N=11+mj+nk (9)

and the requirement that the body be slender is satisfied by the
restriction

1K1 - (10)

at all points. One boundary condition is, of course, the requirement
that there be no normal component of flow at the surface of the body.
This condition is satisfied for the body in its reference position if
the relation

V'l_\T=(Vo+CPx)Z+(Pym+(PZn=O
and hence
(Vo + Px)Gx + PyGy + PzGz = O (11)
holds everywhere on the surface. This expression can readily be
generalized to include steady motion at small angles of attack, side-
slip, and roll. Rotating the body to these angles relative to the
wind introduces a corresponding rotation of the normals to the body.S

In terms of the direction cosines of the original normals, then, the
expression for the rotated normals may be given in the form

N' = (12+mB - na)T + (m + nd - 18)F + (n + lo- md)k (12)

2 The body is defined as being in its reference position when the nose
coincides with the origin of the coordinate system and the angles of
attack, sideslip, and roll are zero.

81In general, such rotations are not commutative; that is, the result is
not the same when the sequence of the rotations is changed. This
difficulty is avoided by restricting the analysis to consider only
terms of the first order in the angles of rotation. This restriction
is consistent with the initial assumptions but does not have to be
made in the case of the angle of roll as will be discussed in greater
detail later in the report.
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Imposing the requirement specified by equation (10), equation (12) is
further reduced to the form

Nt = (1+mB - na)i + (m+nd)J + (n - md)k (13)

If the vector N in equation (11) is replaced by N' as defined in
this expression, then the desired generalized boundary condition on the
surface of the body, is given by the equation

Vo(Gx + BGy + aGz) + Py(Gy + 8Gz) + P(Gz - 8Gy) = 0 (1k)
In this equation the derivatives of G are, of course, evaluated on
the surface of the body in the reference position, while the derivatives

of @ are evaluated at corresponding points on the body in 1ts rotated
position. The remaining boundary condition is, of course,

Px =Py =9z =0 at x = - (15)
In order to obtain the similarity law for flow about related
bodie€s, it is convenient to express the equations of motion and boundary

conditions in a nondimensional form. A dimensionless coordinate system
is therefore introduced with the affine transformation

(16)

and a nondimensional perturbation potential function is defined by the

relation4
f(gﬂbg) = CP(_X yfi)jg ’ (17)
acMpce

where ¢, b, and t are a characteristic length, width and height of a
body, respectlvely Under the coordinate transformation given above,
equation (8) takes the form

g(E,n,8) =0 - (18)

Substituting equations (16) and (17) into equation (7) there is then
obtained for the equaticn of motion

2 1 /KN 2 2 412 2|k V¥
Ky fgg—[l (71)10G fg - 5o E)Kt fy -5 Ky T ]('K{; fan -

4The function chosen here differs from those employed by Tsien and
Hayes. It has the advantage of simplifying the expressions for the
boundary conditions.
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: ]
4 7y-1 Ky ¥ 7+1
2 7-4 _L 2 2 _7ti 2 2
[1-(71)1@C fe - 5 (Kb> Kt = fn 5 KtZ £y }f§§+
2 ‘ 2
Kt 2 2 Kt 2
2 KE) Kt~ fnfgn + K¢~ fefge + (Eﬁ) K¢~ fnfefpe = O (19)
In an analogous manner, equations (14) and (15) for the.boundary *
conditions assume the nondimensional forms
Xp
8¢ ¥ & 1y Kp St Kt Kt &y * gng K
Kt
f§<g§-qu6§€>=O (20)
\ on the surface, and
. fg=1fp=fg=0 at &= - (21)

where the hypersonic simjlarity parameters for a constant value of 7y
are given as follows:

Kg = Mo < (22)
Kp = Mo 2 (23)
Ky = Mo (2h)
Kg = MoB (25)
Kg = & (26)

With equations (19) through (26), the similarity law for inviscid
hypersonic flow about slender shapes can be deduced, for it is clear
that the flow now depends only on the dimensionless shape function g
(i.e., the thickness distribution of a shape or body in the flow) and
{ the similarity parameters previously given. Thus the law may be stated
as follows: For bodies described by the same dimensionless function
and immersed in flows such that the same values of the similarity para-
. meters are obtained, the disturbance flow fields are defined by the
same dimensionless perturbat¢on potential function, and are, therefore,
similar. Thus for similarity of flow about bodies, it is only necessary

N
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that their lateral dimensions and angles with respect to the flow
direction be inversely proportional to the Mach number of the flow.

This statement of the law is essentially a generalization of that
originally presented by Tsien. The new similarity parameters Kps Ka
Kp, and Kg define additional restrictions on the shapes and attitudes
of related bodies;5 however, the similarity parameter Kt (and the
. restriction imposed by it) is the same as the one in reference 1,
ob%ained from the considerations of two-dimensional and axially
symmetric flows. In regard to the new similarity parameters, attention
is called to Ky which, it is noticed, does not contain Mp. The roll
angle is the same, then, for related bodies in similar hypersonic flows.
This result could have been deduced intuitively, and it seems equally
clear that if the rotations to angles of attack, sideslip, and roll are
required to be in the same sequence (see footnote 3), then the result
is also valid for arbitrarily large angles of roll.

APPLICATIONS OF THE SIMILARITY LAW AND DISCUSSION OF RESULTS

In the preceding section the hypersonic similarity law was
developed in a general form. The law is employed in this section to
correlate the physical properties of similar flow fields and the aero-
dynamic characteristics of some related shapes of practical interest.

Some effects of viscosity are considered in the investigation of
the aerodynamic characteristics for inclined bodies of revolution. The
assumption of inviscid flow is, however, retained elsewhere in this
study.

Correlation of the Physical Properties
of Similar Flow Fields

In aerodynamic studies, perhaps the most important physical
property of a fluid is the static pressure. This pressure at any point
in a flow field of the type under consideration is given by the relation

S5rne terms "related bodies" will be used, henceforth, to identify
bodies that are described by the same shape function g.
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Simplifying this equation to include only terms of the proper order and
transforming the resulting expression to nondimensional form yields
the following relation:

7

b _ 2 y-1 2 Kt 2 7-1
s = 1l - -1)K fp - L= - a 2 2
Po { (-2 : 2 [Kt < Kb>fn * K fCJ}

The derivatives of f are, however, functions only of the similarity
parameters and the dimensionless coordinates; therefore, this expression
may be written as

= 513; (£,1,85 K, Ky, Ka, KB: K5) (27)

s

It is clear from this relation that for similar flows, the ratio of the
local to the free-stream static pressure is the same at corresponding
points (&,n,8) in the flow fields. A direct consequence of this rule

is that the center of pressure is at the same (¢,n,8) location on
related bodies in similar hypersonic flows. It may easily be shown that
this rule can also be applied to relate other physical properties of
similar flow fields, such as temperatures, densities and Mach numbers.

Correlation of the Aerodynamic Characteristics
of Some Related Shapes

Bodies of Revolution.- For bodies of revolution, equation (27)
reduces to the form 8

Y B .
g’—“i; (§,Tl,§, Ky, K(x)
where Ky is eliminated as it is identical to Kt. This equation is

integrated in the usual manner to obtain the 1lift, drag, and pitching-
moment coefficients of related bodies. It is convenient to write the

expressions for these coefficients in the following forms:

8 Because of the axial symmetry of bodies of revolution only angles of
attack are considered. This consideration obviates a discussion of
force and moment characteristics at angles of sideslip or combined
angles of attack and sideslip, while roll, of course, has no meaning.
It is clear, then, that the similarity parameters Kg and Ks are
eliminated from this analysis.
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MoCr, = €L = Cr(Ke, Ka)
MECp = & = Cp(Ke, Ka) N (28)
MoCm = Cn = Cm(Kt, Ka)

Where EL, Eb, and 6@ are designated 1lift, drag,and pitching-moment
parameters, respectively.7 It is apparent from these relations that
the corresponding force and moment parameters have identical values for
related bodies of revolution provided the corresponding similarity
parameters have jdentical values. It will now be shown that this
conclusion can be generalized to include the significant effects of the
viscous cross forces on related inclined bodies.

The viscous cross force arises from the flow (usually partially
separated) of the boundary-layer transverse to the body axis. A method
of estimating this force along with the 1ift, drag, and pitching-moment
coefficients associated with it has been suggested by Allen in refer-
ence 5, and is presented in the appendix of the present paper. The
resulting expressions for these coefficients (see equation (c) in the
appendix) are transformed to the nondimensional form and the following
relations are obtained:

MoCL, = ¢d, Fi(Kt, Ka)
Mo2Cp . = ¢a, Fo(Kt, Ka) | (29)
MoCM, = cd, Fs(Kt, Ka)
For slender bodies of revolution of the type under consideration, éac
is primarily a function of the Mach number and Reynolds number of

the flow component normal to the body axis. Consequently, these
expressions can be reduced to the form

Cr (Kgs Kq» Re)

Op, (K> Ko Ro) (30)

MO CIJ‘V' =

G
Dy
MCp, = Cn, = Cmv(Kt’ Kg» Rg)

where Re is the cross Reynolds number. It is clear when comparing
these relations with those of equation (28) that the conclusion drawn
from the latter relations applies with equal validity when viscous
cross-flow effects are considered, provided that Re 1s included as a
similarity parameter.®

=
°n
o
g
f

R

7If the angle of attack is zero, Ky = O and the expression for the
drag parameter reduces to a form equivalent to that obtained by Tsien.

8Tt is assumed that the viscous flow considered here does not signi-
ficantly influence the potential, inviscid flow discussed previously.
Hence the force and moment coefficients resulting from these flows
may be superimposed.
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A limited experimental check of the similarity law for bodies of
revolution has been made in the Ames 10- by lh-inch supersonic wind
tunnel. Two cones having thickness ratios of 0.333 and 0.204 were
tested at Mach numbers of 2.75 and 4.46, respectively; thus the value
of Kt was 0.91. Equipment for measuring forces and moments was not
available at the time of these tests; therefore, pressures only were
measured on the cones. These measurements were made at the locations
shown in figure 1 for angles of attack up to 5°. Overlapping values
of Ky up to 14° were thus obtained. The ranges of cross-flow Reynolds
numbers covered in the tests are shown in figure 2, and it 1s evident
that identical values of R could not be obtained for the two cones
at the same values of Ky.

Experimentally determined pressure ratios are shown in figure 3 as
a function of Kg. Agreement with the prediction of the similarity law
is generally observed, in that the values of p/py for corresponding
points on the two bodies lie essentially along the same curve. The
exception to this agreement is on the lee sides of the cones (6=180°)
where it is noted that significantly different curves are defined.
This difference is believed to be the result of dissimilar flow sepa-~
ration from the two cones, caused in turn by the marked differences in
the cross-flow Reynolds number previously mentioned. Separation
Phenomena should be essentially similar at identical cross-flow Reynolds
numbers, in which case the corresponding values of p/po should agree.

Wings, Bodies, and Wing-Body Combinations.- The general form of the
similarity law must be employed in this phase of the investigation. 1In
order, then, to obtain expressions for the force and moment parameters
of wings, bodies, and wing-body combinations, it is necessary to inte-
grate equation (27) over related, but otherwise arbitrary shapes. The
resulting expressions are

MOCL = CL = CL(Kt:Kb)KQJKB:Kg) W
MZCp = Cp = Cp(Ki,Kp,Kqy,Kp,Ks)
MOCC = CC = CC(Kt’Kb’Ka’KB’KB)
M.C, =C =C. (KK Kn,Kn) + = & (Ki Ky Ko KayKe) P(?’l)
o'm T “m - “mj\Bt bsKao B8 Mg2 "mo tt T pr e BB e
~ ~ 1 ~
Ch = Cy = Cp (Ki,Kp,Ky,Kg,Kg) + T Cn (K, Ky 5Ky, Kg,Ks)
MoCy = Gy = €y(Kt,Kp,Ka,Kp,Ks) J

It is clear from the equations for the pitching-moment and yawing-
moment parameters that these two parameters cannot be correlated for
related wings, bodies or wing-body combinations of slender, but otherwise
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completely arbitrary shape.9 Correlation can be achieved, however, if
two restrictions are placed on the shapes of these configurations. For
the case of pitching moment, the restriction is that the 1 direction
cosines of the outer normals to the surface must, in general, be small
compared to the corresponding n direction cosines. Thus, for example,
vertical fins (alone) having surface slopes in the chordwise direction
generally of the same order of magnitude as the slopes in the depth-
wise direction are eliminated from consideration. Such a shape is
shown in sketch (b). In the case of yawing moment, the restriction

y

T ———

(®) - . (c)

is that 1 must, in general, be small compared to m. Thus, for
example, wings, as shown in sketch (c), having chordwise slopes
generally of the same order .of magnitude as the spanwise slopes, are
eliminated from consideration. With these restrictions, the terms in
the relations for MoCp and Cp containing 1/Mo® as their coef-
ficient may be neglected, and thus correlating expressions for these
parameters are obtained. In this case the more general consequence of
the similarity law for inviscid hypersonic flow is apparent; namely,
the corresponding force and moment parameters have identical values for
related wings, bodies or wing-body combinations, provided the corres-
ponding similarity parameters have identical values.l©

Tt is of interest to examine these relations as they apply to thin
wings. If, for spanwise symmetric wings, only angle of attack is

9The second term on the right in the relations for MoCm and Cp
arises from the moment due to the nonsymmetry of the drag force.

107t is clear that the conclusion drawn from equation (28), applying
to bodies of revolution, is a restricted form of this statement.
is not evident, however, that this statement can be generalized to
include significant viscous effects, as was possible with the afore-

mentioned conclusion.

It
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considered, the similarity parameters Kg and K vanish and only
three of the aerodynamic coefficients remain. The corresponding force
and moment parameters are reduced to the formsll

a'L(Kt) Kb, Ka)
MoacD = ED = CND(K.t, Kb, KCL)

MoCp Em(Kt; Ky, ch)

MoC1, = Ei

Cn

il
1

These relations also apply,'of course, to wing sections. In this
case, b and therefore Kb are infinite and it is seen from equa-
tions (19) and (20), that the terms involving Kp vanish yielding the
two-dimensional equations for hypersonic flow. The similarity para-
meter Ky 1is thus eliminated from equation (32). This result is
equivalent to that presented in reference 1. 12

Of practical importance is the conclusion to be drawn from the
dimensionless equation of motion as it applies to thin wings.
It is noticed in the equation that the parameter Kp always appears in

Ki @ 2
the form K% = %E' If b 1is of the same order of magnitude as c,

then, consistent with the other approximations made in developing this

K
equation, the terms involving -t are to be neglected. Performing
) K.b

this operation, however, yields the equation of motion for two-
dimensional flow. Thus it is indicated that, if the aspect ratio is of
the order of magnitude of one or greater, hypersonic flow about wings
may be treated approximately as a two-dimensional-flow problem. The
latter problem is, of course, relatively simple to solve.

A particular example is chosen to illustrate the application of
the similarity law to wing-body combinations, which may be thought of,
for this purpose, simply as irregular shapes. In figure 4 are shown
two related cruciform wing and body combinations at related angles of
attack. It is seen that in going from a Mach number of 4 to a Mach
number of 8, the wing and body thickness, the wing spans, and the angle
of attack are decreased by one-half in order to maintain similarity of
flow. The effects of the changes on some of the aerodynamic coef-
ficients are also shown in the figure.

1lparameters equivalent to these were obtained by Tsien and, although
not published, were presented in the form of lecture notes. As so
often happens, these notes were brought to the attention of the
authors after completion of this investigation.

'2The exponents of M, obtained here are different from those obtained
in reference 1, because b t is used as a reference area, rather
than ¢ b.
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CONCLUDING REMARKS

The similarity law for steady, inviscid hypersonic flow about
slender three-dimensional shapes has been derived in terms of customary
aerodynamic parameters. To have similarity of flow, the law states
that the lateral dimensions of the shapes in guestion and their angles
with respect to the flight direction must be inversely proportional to
their flight Mach numbers. A direct consequence of this law is that
the ratio of the local static pressure to the free-stream static
pressure is the same at corresponding points in similar flow fields.
With the aid of this law, simple expressions were obtained for corre-
lating the forces and moments acting on related shapes in hypersonic
flows. The shapes treated were wings, bodies, and wing-body combina-
tions. In the case of inclined bodies of revolution, these expressions
were generalized to include the significant effects of the viscous
cross force. The law, as it applies to bodies of revolution, was sub-
jected to a limited experimental check by comparing pressures measured
on two inclined cones in related flows. Theory and experiment were in
good agreement except on the lee sides of the cones where the dissimilar
cross-flow Reynolds numbers would be expected to yield dissimilar
separated flows.

The range of applicability of the law for practical three-
dimensional shapes appears to merit investigation. If this range 1is
relatively as wide as the corresponding range for noninclined bodies
of revolution, the law should prove of value in correlating experimental
data, and in simplifying theoretical calculations of the aerodynamic
characteristics for families of these shapes. .

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., June 5, 1951.
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APPENDIX
FORCES AND MOMENTS DUE TO VISCOUS CROSS FLOWS

ON BODIES OF REVOLUTION

In reference 6, Prandtl demonstrated that laminar viscous flows
over infinitely long inclined cylinders may be treated by considering,
independently, the components of the flow normal and parallel to the
axis of the cylinder. Jones, in reference 7, applied this concept to
the study of boundary-layer flows over yawed cylinders. The work of
Prandtl and Jones suggests, as indicated by Allen in reference 5, that
the cross force on slender inclined bodies of revolution may be esti-
mated in the following manner: ZEach cross section of the body is
treated as an element of an infinite cylinder of the same radius. The
cross force per unit length on such a cylinder is given by the follow-
ing equation:

sy = T e, poVoesinta (A1)

The incremental 1ift, drag,and moment produced by this cross force
are then given by the relations

1ift = r 4, povozsine a cos a
drag = r cq p V 25in®a (A2)
c

moment = r x c3 povoasinaa
c

Retaining leading terms in o and integrating over the body,
where r = r(x), the aerodynamic coefficients are given by the equations

2Cdc a2 c 4
CLV = ——A————f r dx
(o]
285 a8
de c .
CDV = ——-A———-—-f r dx ? (A3)
O
28(1 C12 C
C S . rx dx
m, Ac ° J

where the reference area is proportional to the maximum cross-sectional
area of the bg@y and the reference length is the body length. The
coefficient cd, 1is the mean ¢d, for the body of revolution, and has

therefore been taken outside the integral.
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(a) t/c=.333

(b) tre=.204
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90°
45°
0%

(c) Orifice location, @
in transverse plane, A-A

Figure |.— Location of orifices on two cones tested at K t= 0.9/
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